The functional significance of leaf orientation in the sand dune herb Pennywort

Heather M. Joesting Wake Forest University

Light + CO_2 + $H_2O \rightarrow Sucrose (C_6H_{12}O_6) + O_2$

Sunlight and Photosynthesis

Energy dissipated via <u>photochemical</u> processes – **Photosynthesis**

Transpiration

Adaptations to High Light Stress

- Anthocyanin production
- Small leaf size
- Hairs and wax to make surface more reflective
- Leaf succulence
- CAM photosynthesis
- Leaf orientation

Leaf Orientation

Rumex densiflorus in alpine tree-line, Wyoming Geller and Smith, 1982

Perezia nana in Sonoran Desert Sylvertsen and Cunningham, 1979

Leaf orientation reduces midday light exposure and decreases leaf temperature and transpiration rate *Werk. and Ehleringer, 1984; Smith and Ullberg, 1989; James and Bell, 2000*

Leaf Orientation – Azimuth

Pennywort – Hydrocotyle bonariensis

Pennywort – Hydrocotyle bonariensis

Questions

What is the function of observed leaf

orientation in Pennywort (Hydrocotyle bonariensis)?

- 1. Is there daily and/or seasonal leaf orientation, and what is the effect on sunlight exposure?
- 2. What is the effect of leaf orientation on leaf temperature, photosynthetic gas exchange, and water loss?

Questions

What is the function of observed leaf

orientation in Pennywort (Hydrocotyle bonariensis)?

- 1. Is there daily and/or seasonal leaf orientation, and what is the effect on sunlight exposure?
- 2. What is the effect of leaf orientation on leaf temperature, photosynthetic gas exchange, and water loss?

Q1 – Methods

- Measured leaf angle every two hours from 08:00 h to 18:00 h on single mature leaves
- Early season (May), midseason (June and August), and late season (September)

Q1 – Methods

- Light measured as
 Photosynthetically active radiation
 (PAR; describes amount of incident light seen by leaf)
- Measured for top of leaf and bottom of leaf every 2 hours from 08:00 h to 18:00 h in May, June, August, and September

Daily Leaf Orientaiton

Same general trend for leaf azimuth

Seasonal Leaf Orientation

Increase in mean leaf angle over the growing season, from 55° to 82° Increase in mean leaf azimuth over growing season, from 94° to 205°

Seasonal but Not Daily Orientation

- Daily orientation:
 - There was little to no variation daily in mean leaf angle and mean leaf azimuth
- <u>Seasonal orientation:</u>
 - Increase in mean leaf angle and mean leaf azimuth over growing season
- First study to show seasonal but not diurnal orientation

Daily Light on Top and Bottom Leaf Surface

Reduction in midday light on top leaf surface with more inclined leaf in late season

Shift in peak (09:00 – 10:00 h early season, 12:00 - 14:00 h late season) on both top and bottom leaf

Seasonal Ratio of Top: Bottom Light Exposure

	May	June	August	September
Top PPFD	674 ± 67.8	406 ± 29.2	528 ± 20.6	620 ± 57.7
Bottom PPFD	172 ± 16.5	245 ± 16.1	162 ± 18.1	200 ± 22.1
Top/Bot	3.92	1.66	3.26	2.07

Q1 – Conclusion

- Seasonal increase in leaf angle (more vertical) and leaf azimuth (seasonally tracks the sun)
- <u>Daily light regulation:</u>

 $-\uparrow$ a.m., **peak** midday, \downarrow p.m.

• Seasonal light regulation:

 $-\downarrow$ in top light exposure, **shift in peak** in bottom light exposure

May: ~4x more light on top leaf surface (mean leaf angle = 54°) June: ~1.5 x more light on top leaf surface (75°) August: ~3x more light on top leaf surface (82°) September: ~2x more light on top leaf surface (82°)

Q2 – Expectations

Questions

What is the function of observed leaf

orientation in Pennywort (Hydrocotyle bonariensis)?

- 1. Is there daily and/or seasonal leaf orientation, and what is the effect on sunlight exposure?
- 2. What is the effect of leaf orientation on leaf temperature, photosynthetic gas exchange, and water loss?

Measured monthly from 06:00 - 21:00 h with leaf thermocouple (N = 2 - 4 pairs)

Measured monthly from 09:00 to 17:00 h with infrared gun (N = 10 pairs)

Q2 – Methods

Photosynthetic gas exchange measured on experimental and control leaves in July and August at midday

LICOR LI-6400 portable photosynthesis system

Measures gas exchange in plant leaves

Known amount of CO_2 and water vapor to leaf – Amount of CO_2 and water vapor back to system = Amount of CO_2 taken up by leaf and water vapor released

Daily Leaf Temperature

- Photosynthesis
 - Leaf converting more light and CO₂ to sucrose
- Leaf conductance
 - Stomata are open and exchanging more CO₂ and water vapor
- Transpiration
 - Leaf is losing more water by evaporative heat loss

Role of Transpiration

• What is the influence of transpiration in reduced leaf temperature in inclined leaves?

Three groups of six similar sized leaves with similar leaf inclination 3 leaves control, 3 leaves covered in Vaseline (experimental) Leaf temperature measured every hour from 11:00 – 14:00 h with infrared gun

Q2 – Conclusions

- Inclined leaves have lower leaf temperatures and greater photosynthetic gas exchange
- There is also an important role of evaporative heat loss via transpiration maintaining leaf temperatures
 - Leaves covered in vaseline could not lose water vapor and had higher leaf temperatures as result

Function of leaf orientation in Pennywort

- Leaf angle increases over season to reduce midday incident sunlight
- Increase in leaf azimuth seasonally tracks sun to maximize a.m. and p.m. light capture
- Inclined leaf orientation
 reduces leaf temperature and
 facilitates photosynthetic gas
 exchange

Acknowledgements

Dissertation Committee:

Dr. William K. Smith (advisor)

Dr. Ronald V. Dimock

Dr. Kathy Kron

Dr. Miles Silman

Dr. Tara Greaver

Field and Lab Assistants:

Matt Marenberg

Wreana Ward

Joseph White

Wyatt Allen

John Track

Funding:

National Science Foundation (NSF) – Research Coordinated Network (RCN)

Coastal Barrier Island Network (CBIN)

Wake Forest Research Fund

Department of Biology, Wake Forest University Vecellio Fund

Department of Biology

