The functional significance of leaf orientation in the sand dune herb Pennywort

Sunlight and Photosynthesis

Sunlight and Photosynthesis

Sunlight and Leaf Temperature

Heat $=$ increase in leaf temperature

Energy dissipated via photochemical processes -
Photosynthesis

Sunlight and Leaf Temperature

Leaf Temperature and Water Loss

Heat $=$ increase in leaf temperature

Leaf cools by evaporative heat loss (transpiration)

Energy dissipated via non photochemical processes

Transpiration

Increased water loss

Light Processing in Leaves

Light Processing in Leaves

High light environment

Adaptations to High Light Stress

- Anthocyanin production
- Small leaf size
- Hairs and wax to make surface more reflective
- Leaf succulence
- CAM photosynthesis
- Leaf orientation

Leaf Orientation

Rumex densiflorus in alpine tree-line, Wyoming Geller and Smith, 1982

Perezia nana in Sonoran Desert Sylvertsen and Cunningham, 1979

Leaf orientation reduces midday light exposure and decreases leaf temperature and transpiration rate Werk and Ebleringer, 1984; Smith and Ullberg, 1989; James and Bell, 2000

Leaf Orientation - Angle

Leaf Orientation - Azimuth

Morning
East

Pennywort - Hydrocotyle bonariensis

Pennywort - Hydrocotyle bonariensis

Questions

What is the function of observed leaf
orientation in Pennywort (Hydrocotyle bonariensis)?

1. Is there daily and/or seasonal leaf orientation, and what is the effect on sunlight exposure?
2. What is the effect of leaf orientation on leaf temperature, photosynthetic gas exchange, and water loss?

Study Site

Topsail Island

North Carolina

Questions

What is the function of observed leaf
orientation in Pennywort (Hydrocotyle bonariensis)?

1. Is there daily and/or seasonal leaf orientation, and what is the effect on sunlight exposure?
2. What is the effect of leaf orientation on leaf temperature, photosynthetic gas exchange, and water loss?

Q1 - Methods

- Measured leaf angle every two hours from 08:00 h to 18:00 h on single mature leaves
- Early season (May), midseason (June and August), and late season (September)

Q1 - Methods

- Light measured as Photosynthetically active radiation (PAR; describes amount of incident light seen by leaf)
- Measured for top of leaf and bottom of leaf every 2 hours from 08:00 h to 18:00 h in May, June, August, and September

Daily Leaf Orientaiton

Same general trend

 for leaf azimuth

Seasonal Leaf Orientation

Increase in mean leaf angle over the growing season, from 55° to 82°
Increase in mean leaf azimuth over growing season, from 94° to 205°

Seasonal but Not Daily Orientation

- Daily orientation:
- There was little to no variation daily in mean leaf angle and mean leaf azimuth
- Seasonal orientation:
- Increase in mean leaf angle and mean leaf azimuth over growing season
- First study to show seasonal but not diurnal orientation Midday

Daily Light on Top and Bottom Leaf Surface

Reduction in midday light on top leaf surface with more inclined leaf in late season

Shift in peak (09:00 - 10:00 h early season, 12:00 - 14:00 h late season) on both top and bottom leaf

Seasonal Ratio of Top: Bottom Light Exposure

	May	June	August	September
Top PPFD	674 ± 67.8	406 ± 29.2	528 ± 20.6	620 ± 57.7
Bottom PPFD	172 ± 16.5	245 ± 16.1	162 ± 18.1	200 ± 22.1
Top/Bot	3.92	1.66	$\mathbf{3 . 2 6}$	2.07

Q1 - Conclusion

- Seasonal increase in leaf angle (more vertical) and leaf azimuth (seasonally tracks the sun)
- Daily light regulation:
- \uparrow a.m., peak midday, \downarrow p.m.
- Seasonal light regulation:
- \downarrow in top light exposure, shift in peak in bottom light exposure

May: $\sim 4 \mathrm{x}$ more light on top leaf surface (mean leaf angle $=54^{\circ}$)
June: $\sim 1.5 \mathrm{x}$ more light on top leaf surface $\left(75^{\circ}\right)$
August: $\sim 3 \mathrm{x}$ more light on top leaf surface $\left(82^{\circ}\right)$
September: $\sim 2 \mathrm{x}$ more light on top leaf surface $\left(82^{\circ}\right)$

Q2 - Expectations

Midday

\uparrow leaf temperature and transpiration (E)
\downarrow photosynthesis (A)

Midday

\downarrow leaf temperature and transpiration (E)
\uparrow photosynthesis (A)

Questions

What is the function of observed leaf
orientation in Pennywort (Hydrocotyle bonariensis)?

1. Is there daily and/ or seasonal leaf orientation, and what is the effect on sunlight exposure?
2. What is the effect of leaf orientation on leaf temperature, photosynthetic gas exchange, and water loss?

Q2 - Methods

Measured monthly from 06:00-21:00 h with leaf thermocouple ($N=2-4$ pairs)

Measured monthly from 09:00 to 17:00 h with infrared gun ($N=10$ pairs)

Q2 - Methods

Photosynthetic gas exchange measured on experimental and control leaves in July and August at midday

LICOR LI-6400 portable photosynthesis system
Measures gas exchange in plant leaves
Known amount of CO_{2} and water vapor to leaf Amount of CO_{2} and water vapor back to system $=$ Amount of CO_{2} taken up by leaf and water vapor released

Daily Leaf Temperature

Gas Exchange

\square	Control
\square	Experimental (forced)

Inclined leaves have greater:

- Photosynthesis
- Leaf converting more light and CO_{2} to sucrose
- Leaf conductance
- Stomata are open and exchanging more CO_{2} and water vapor
- Transpiration
- Leaf is losing more water by evaporative heat loss

Role of Transpiration

- What is the influence of transpiration in reduced leaf temperature in inclined leaves?

Three groups of six similar sized leaves with similar leaf inclination

3 leaves control, 3 leaves covered in Vaseline (experimental)

Leaf temperature measured every hour from 11:00-14:00 h with infrared gun

Midday Leaf Temperatures

Q2 - Conclusions

- Inclined leaves have lower leaf temperatures and greater photosynthetic gas exchange
- There is also an important role of evaporative heat loss via transpiration maintaining leaf temperatures
- Leaves covered in vaseline could not lose water vapor and had higher leaf temperatures as result

- Function of leaf orientation

 in Pennywort- Leaf angle increases over season to reduce midday incident sunlight
- Increase in leaf azimuth seasonally tracks sun to maximize a.m. and p.m. light capture
- Inclined leaf orientation reduces leaf temperature and
 facilitates photosynthetic gas exchange

Acknowledgements

Dissertation Committee:

Dr. William K. Smith (advisor)
Dr. Ronald V. Dimock
Dr. Kathy Kron
Dr. Miles Silman
Dr. Tara Greaver
Field and Lab Assistants:
Matt Marenberg
Wreana Ward
Joseph White
Wyatt Allen
John Track

Funding:

National Science Foundation (NSF) Research Coordinated Network (RCN)

Coastal Barrier Island Network (CBIN)

Wake Forest Research Fund
Department of Biology, Wake Forest University Vecellio Fund

